Triangulations for the cube
نویسندگان
چکیده
منابع مشابه
Asymptotically efficient triangulations of the d-cube
Triangulating the regular d-cube I = [0, 1] in a “simple” way has many applications, like solving differential equations by finite element methods or calculating fixed points. See, for example, [7]. Determining the smallest number of simplices needed has brought special attention both from a theoretical point of view and from an applied one (see [6, Section 14.5.2] for a recent survey). Before ...
متن کاملThe hyperdeterminant and triangulations of the 4-cube
The hyperdeterminant of format 2 × 2 × 2 × 2 is a polynomial of degree 24 in 16 unknowns which has 2894276 terms. We compute the Newton polytope of this polynomial and the secondary polytope of the 4-cube. The 87959448 regular triangulations of the 4-cube are classified into 25448 Dequivalence classes, one for each vertex of the Newton polytope. The 4-cube has 80876 coarsest regular subdivision...
متن کامل. C O ] 1 1 A pr 2 00 2 ASYMPTOTICALLY EFFICIENT TRIANGULATIONS OF THE d - CUBE
We describe a method to triangulate P × Q which is very useful to obtain triangulations of the d-cube I of good asymptotic efficiency. The main idea is to triangulate P × Q from a triangulation of Q and another of P ×∆, where ∆ is a simplex of dimension m− 1, which is supposed to be smaller than dim(Q) = n− 1. Last triangulation will induce a triangulation of P ×∆. Thus, considering P := I and ...
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1976
ISSN: 0097-3165
DOI: 10.1016/0097-3165(76)90014-5